Aggregation chimeras demonstrate that the primary defect responsible for aganglionic megacolon in lethal spotted mice is not neuroblast autonomous.

نویسندگان

  • R P Kapur
  • C Yost
  • R D Palmiter
چکیده

The lethal spotted (ls) mouse has been used as a model for the human disorder Hirschsprung's disease, because as in the latter condition, ls/ls homozygotes are born without ganglion cells in their terminal colons and, without surgical intervention, die early as a consequence of intestinal obstruction. Previous studies have led to the conclusion that hereditary aganglionosis in ls/ls mice occurs because neural crest-derived enteric neuroblasts fail to colonize the distal large intestine during embryogenesis, perhaps due to a primary defect in non-neuroblastic mesenchyme rather than migrating neuroblasts themselves. In this investigation, the latter issue was addressed directly, in vivo, by comparing the distributions of ls/ls and wild-type neurons in aggregation chimeras. Expression of a transgene, D beta H-nlacZ, in enteric neurons derived from the vagal neural crest, was used as a marker for ls/ls enteric neurons in chimeric mice. In these animals, when greater than 20% of the cells were wild-type, the ls/ls phenotype was rescued; such mice were neither spotted nor aganglionic. In addition, these 'rescued' mice had mixtures of ls/ls and wild-type neurons throughout their gastrointestinal systems including distal rectum. In contrast, mice with smaller relative numbers of wild-type cells exhibited the classic ls/ls phenotype. The aganglionic terminal bowel of the latter mice contained neither ls/ls nor wild-type neurons. These results confirm that the primary defect in ls/ls embryos is not autonomous to enteric neuroblasts, but instead exists in the non-neuroblastic mesenchyme of the large intestine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anatomic modifications in the enteric nervous system of piebald mice and physiological consequences to colonic motor activity.

It has been assumed that in piebald lethal mice that develop megacolon, impaired colonic motor activity is restricted to the aganglionic distal colon. Peristaltic mechanical recordings, immunohistochemistry, and quantitative PCR were used to investigate whether regions of the colon, other than the aganglionic segment, may also show anatomical modifications and dysfunctional colonic motor activi...

متن کامل

Intercellular signals downstream of endothelin receptor-B mediate colonization of the large intestine by enteric neuroblasts.

Mice homozygous for the piebald lethal (sl) mutation, which have a complete deletion of endothelin receptor-B, fail to form ganglion cells in the distal large intestine and are nearly devoid of cutaneous melanocytes. These phenotypic features stem from incomplete colonization of the hindgut and skin by neural crest-derived neuroblasts and melanoblasts, respectively. We have used expression of a...

متن کامل

Embryogenesis of the enteric ganglia in normal mice and in mice that develop congenital aganglionic megacolon.

Embryological studies on the mouse indicate that, contrary to the classical concept, all the enteric ganglia are from a single, vagal, neural crest source. The immature ganglion cells first enter the gut by way of the newly formed vagal outgrowth at 10 days gestation. The neuroblasts then migrate down the gut in a cranio-caudal direction, being replaced by more neuroblasts from the vagus. By 15...

متن کامل

Effects of the lethal yellow (A*) mutation in mouse aggregation chimeras

The A allele is a recessive lethal mutation at the mouse agouti locus, which results in embryonic death around the time of implantation. In the heterozygous state, A produces several dominant pleiotropic effects, including an increase in weight gain and body length, a susceptibility to hepatic, pulmonary and mammary tumors, and a suppression of the agouti phenotype, which results in a yellow co...

متن کامل

Interstitial cells of Cajal and electrical activity in ganglionic and aganglionic colons of mice.

An antibody directed against Kit protein was used to investigate the distribution of interstitial cells of Cajal (ICC) within the murine colon. The ICC density was greatest in the proximal colon and decreased along its length. The distribution of the different classes of ICC in the aganglionic colons of lethal spotted (ls/ls) mice was found to be similar in age-matched wild-type controls. There...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 117 3  شماره 

صفحات  -

تاریخ انتشار 1993